
Hybrid Programming and Performance for Beam Propagation Modeling

Misun Min,∗‡ Jing Fu,‡ Azamat Mametjanov‡
‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract
We examined hybrid parallel infrastructures in order to

ensure performance and scalability for beam propagation
modeling as we move toward extreme-scale systems. Us-
ing an MPI programming interface for parallel algorithms,
we expanded the capability of our existing electromagnetic
solver to a hybrid (MPI/shared-memory) model that can
potentially use the computer resources on future-generation
computing architecture more efficiently. As a prelimi-
nary step, we discuss a hybrid MPI/OpenMP model and
demonstrate performance and analysis on the leadership-
class computing systems such as the IBM BG/P, BG/Q,
and Cray XK6. Our hybrid MPI/OpenMP model achieves
speedup when the computation amounts are large enough
to compensate the OMP threading overhead.

INTRODUCTION
Multicore architectures are current trends for gaining im-

provement in computing power, instead of increased clock
speed. To achieve scalable performance with minimal par-
allelization overhead on such platforms, we have explored
incorporating multithreading frameworks into our exist-
ing MPI-only code NekCEM for beam propagation mod-
eling. Specifically, we are using hierarchical paralleliza-
tion frameworks based on MPI/OpenMP schemes for in-
tranode operations of MPI programs using OpenMP direc-
tives around time-consuming loops that do not contain data
dependencies, while leaving the source code unchanged.
NekCEM [1, 2, 3] is a freely available, massively par-

allel, scalable high-order code for electromagnetic device
simulations. NekCEM has great potential for meeting the
future computational needs of experimental and theoretical
research at exascale, by using a fast communication kernel
for efficiency and body-fitted hexahedral meshes that al-
low significant gains in accuracy. We previously conducted
wakefield calculations using the spectral-element discon-
tinuous Galerkin (SEDG) scheme [4, 5] with fourth-order
Runge-Kutta time stepping, with favorable results in com-
parison with those from low-order methods.
Future-generation supercomputing systems will be

memory-limited relative to the raw computational perfor-
mance. Currently, per processor memory requirements for
NekCEM scale roughly as 600 8-byte words per allocated
gridpoint. The total memory requirements are n = EN3

points x 600 (words/point) x 8 (bytes/word). For example,
with E=800K and N=16, the total memory requirements

∗mmin@mcs.anl.gov

are 800K × 163 × 600 × 8. Assuming that 200 MB of
memory per core are available to the user, one can run this
simulation with P>786,432 cores by setting the number of
local elements more than 10. In the current parallel context,
however, there will be an increasing memory penalty asso-
ciated with two variables, the maximum number of cores
and the upper bound on the total number of elements, as the
problem size becomes very large at extreme scale. A hybrid
MPI/share-memory framework can reduce the memory de-
pendency on these two parameters.

IMPLEMENTATION
Ultrarelativistic beam propagations are governed by

Maxwell’s equations,

Q
∂q

∂t
+∇ · F(q) = S, (1)

where we define the field vector q = [H,E]T and the
flux F(q) = [FH,FE]

T with FH = ei × E and FE =
−ei × H, and the source term S = [0,J]T . The elec-
tric, magnetic, and current fields are represented by E =
(Ex, Ey, Ez)T ,H = (Hx, Hy, Hz)T , and J = (0, 0, Jz)T ,
respectively. The material properties are defined as Q =
diag(µ, µ, µ, ε, ε, ε) with the free space permittivity ε and
free space permeability µ. Initial fields in the presence
of the Gaussian beam are obtained by solving the Poisson
equation in transverse direction at the beam location in the
longitudinal direction.

Numerical Approach
We consider the computational domain Ω with nonover-

lapping hexahedral elements Ωe such that Ω = ∪E
e=1Ω

e,
and we define a weak formulation, introducing the numer-
ical flux F∗ as in [4, 5]:
(

Q
∂q

∂t
+∇ ·F(q) − S, φ

)

Ωe

= (n̂ · [F− F∗], φ)∂Ωe .

(2)
The local solutions of the fields can be written as

qN (x, t) =
N
∑

i,j,k=1

qijkψijk(x), (3)

where qijk is the solution at x=(xi, yj, zk) on Ωe and
ψijk=li(r)lj(s)l)lk(t) using the one-dimensional Legendre
Lagrange interpolation polynomial li of degree N -1 asso-
ciated with the N Gauss-Lobatto-Legendre (GLL) quadra-

ture nodes [6]. Plugging (3) into (2) with a local discontin-
uous test function φ = ψijk and applying the GLL quadra-
ture for the spatial integration, we obtain a semi-discrete
scheme with the mass and stiffness matrices defined as

M = (ψijk , ψîĵk̂)Ωe ,Dx =

(

∂ψijk

∂x
, ψîĵk̂

)

Ωe

, (4)

Dy =

(

∂ψijk

∂y
, ψîĵk̂

)

Ωe

,Dz =

(

∂ψijk

∂z
, ψîĵk̂

)

Ωe

(5)

and the surface integration on the right-hand side in (2) (we
omit the detailed form in this paper).

Algorithms
The algorithm can be simplified as

Un+1 = Un + mxm(Un) + comm(F (Un)), (6)

where mxm and comm respectively represent the matrix-
matrix product and communication operation for the sur-
face integration, F (Un). The main operation count in our
algorithm is dominated by the mxm routine: the curl opera-
tor takes 30% of total cost and 15% of total cost for com-
munication. We focus on speedup by additional threading
on the mxm routines.
Within each subdomain, derivatives are evaluated in a

tensor product fashion by using a one-dimensional differ-
entiation matrix on a reference domain [−1, 1]3. A deriva-
tive of ue (e = 1, ..., E) in a subdomain with respect to
(r, s, t) ∈ [−1, 1]3 is expressed by

uer ≡ Dru
e = (It ⊗ Is ⊗ D̂)ue = ΣN

l=1D̂ilu
e
ljk, (7)

ues ≡ Dsu
e = (It ⊗ D̂ ⊗ Ir)u

e = ΣN
l=1D̂jlu

e
ilk, (8)

uet ≡ Dtu
e = (D̂ ⊗ Is ⊗ Ir)u

e = ΣN
l=1D̂klu

e
ijl, (9)

where It, Is, and Ir are the N × N identity matrices and
D̂ is the one-dimensional differentiation matrix of N ×N
defined in [6].
Dx, Dy and Dz in Eq. (4) require three mxm operations

for each. Thus the cost per timestep involving the mxm oper-
ations for a curl operator scales as O(18EN4) for six field
components. For the MPI-only model, we use the mxm rou-
tine, written in Fortran and assembly code, which includes
the inner-product dimension completely unrolled into a sin-
gle statement, allowing a short-nested loop for more work
per iteration and a hardcoded address increments into mem-
ory read instructions by the compiler [6]. We consider the
OMP routine as an alternative for possible speedup.
OpenMP is a set of APIs for writing multithreaded pro-

grams on shared-memory machines. It can help the com-
piler parallize applications at the highest possible level
through explicit compiler directives yet not involve appli-
cation programmers in low-level details.
For our hybrid MPI/OpenMP design, we use the follow-

ing instruction for the mxm routine:

c$OMP PARALLEL DEFAULT(PRIVATE)

SHARED(A,B,C,N1,N2,N3)
c$OMP DO

do j=1,N3
do i=1,N1

c(i,j) = 0
do k=1,N2

c(i,j) = c(i,j) + a(i,k)*b(k,j)
enddo
enddo
enddo

c$OMP END DO
c$OMP END PARALLEL

PERFORMANCE
We performed our tests on the IBM BG/P and BG/Q and

the Cray XK6 for different problem sizes with varying N
on a hexahedral mesh with E=1152 for an undulator. The
features of the systems are described below.

IBM BG/P The Blue Gene/P Intrepid consists of
40,960 compute nodes (40 racks and 1,024 nodes per rack,
including 640 I/O nodes) with 850 MHz quad-core proces-
sor and 2 GB RAM per node, for a total of 163,840 cores,
80 TB of RAM, and a theoretical peak performance of 557
teraflops.

IBM BG/Q The Blue Gene/Q Mira consists of 49,152
compute nodes (48 racks and 1,024 nodes per rack, includ-
ing 384 I/O nodes) with 1.6 GHz 16-core processor and 16
GB RAM per node, for a total of 786,432 cores, 786 TB of
RAM, and a theoretical peak performance of 10 petaflops.

Cray XK6 The Cray XK6 Jaguar consists of 18,688
compute nodes. Each compute node consists of 16-core 2.2
GHz AMD Opteron processors and 32 GB of RAM, for a
total of 299,008 cores, 598 TB of RAM, and a theoretical
peak performance 2.63 petaflops.

We measured the CPU time and wallclock time for 100
timestep runs. For the CPU time measure, we used dclock
and got an average time over the total number of MPI
ranks. For the wallclock time, we used mpi wtime and
omp get wtime for MPI ranks and OMP threads, respec-
tively. Here we demonstrate the CPU time using the aver-
age value over all MPI ranks.
Figure 1 shows the CPU time for a fixed number of MPI

ranks (=1024) with an increasing number of OMP threads
for the granularity per core n/P=576 and 4608. In the top
figure, adding additional threads (i.e., more computing re-
sources) decreases the performance because the overhead
of creating threads offsets the benefit of parallelizing the
loops for such coarse granularity in computation. As the
work amount increases in the bottom figure, we observe
more OMP threads for speedup. Compared with the MPI-
only case, however, we do not gain much speedup.
Figure 2 demonstrates the CPU time for a fixed num-

ber of total threads (=1024) with varying numbers of MPI

IBM BG/P IBM BG/Q Cray XK6
0

5

10

15

20

25

30

35

40

45

50

CP
Ut

im
e/

po
in

t/s
te

p
(µ

 s
ec

)

Time measure: n=N3E, (N=8, E=1152)

MPI=1024 assembly
MPI=1024
MPI=1024, threads=1
MPI=1024, threads=2
MPI=1024, threads=4
MPI=1024, threads=8

IBM BG/P IBM BG/Q Cray XK6
0

5

10

15

20

25

30

35

40

45

50

CP
Ut

im
e/

po
in

t/s
te

p
(µ

 s
ec

)

Time measure: n=N3E, (N=16, E=1152)

MPI=1024 assembly
MPI=1024
MPI=1024, threads=1
MPI=1024, threads=2
MPI=1024, threads=4
MPI=1024, threads=8

Figure 1: Scaling on MPI/multithreading algorithms on
BG/P, BG/Q, and Cray XK6.

ranks and OMP threads. The granularity per core changes
as n/P=576, 1152, 2304, 4608 with P =1024, 512, 256,
128, respectively, for n=0.58M (top) and n/P=4608, 9216,
18432, 36864 with P =1024, 512, 256, 128, respectively,
for n=4.7M (bottom). By increasing the number of OMP
threads but reducing communication with a smaller num-
ber of MPI ranks, the results show increased speedup con-
sistently. However, superior performance compared with
the MPI-only case is possible when there is enough work
for the OMP loops, as shown in the bottom figure.

CONCLUSION
We have conducted performance studies on leadership-

class computing systems and have demonstrated the
speedup for a hybrid MPI/OpenMP model in comparison
with the MPI only case when the computation amounts are
large enough to hide the OMP threading overhead. Fu-
ture work includes expansion to MPI/GPU threading and
comparison with further optimized MPI/OpenMP model at
larger scale.

ACKNOWLEDGMENT
This work was supported by the Office of Ad-

vanced Scientific Computing Research, Office of Science,

IBM BG/P IBM BG/Q Cray XK6
0

5

10

15

20

25

30

35

40

45

50

CP
Ut

im
e/

po
in

t/s
te

p
(µ

 s
ec

)

Time measure: n=N3E, (N=8, E=1152)

MPI=1024 assembly
MPI=1024
MPI=1024, threads=1
MPI= 512, threads=2
MPI= 256, threads=4
MPI= 128, threads=8

IBM BG/P IBM BG/Q Cray XK6
0

5

10

15

20

25

30

35

40

45

50

CP
Ut

im
e/

po
in

t/s
te

p
(µ

 s
ec

)

Time measure: n=N3E, (N=16, E=1152)

MPI=1024 assembly
MPI=1024
MPI=1024, threads=1
MPI= 512, threads=2
MPI= 256, threads=4
MPI= 128, threads=8

Figure 2: Scaling on MPI/multithreading algorithms on
BG/P, BG/Q, and Cray XK6.

U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

REFERENCES
[1] “NekCEM,” http://wiki.mcs.anl.gov/nekcem.
[2] M. S. Min, J. Fu, P. F. Fischer, “Performance analysis of

the spectral-element discontinuous Galerkin method for elec-
tromagnetic modeling on the IBM BG/P and Cray XK6,”
Preprint ANL/MCS-P1802-0111.

[3] J. Fu, M. S. Min, R. Latham, C. D. Carothers, “I/O threads
to reduce checkpoint blocking for an electromagnetics solver
on Blue Gene/P and Cray XK6,” in International Work-
shop on Runtime and Operating Systems for Supercomput-
ers (ROSS), in conjunction with International Conference on
Supercomputing (ICS), June 2012.

[4] M. S. Min, P. F. Fischer, “Spectral-element discontinuous
Galerkin simulations with a moving window algorithm for
wakefield calculations,” in Proc. of PAC09, TH5PFP03,
2009.

[5] M. S. Min, P. F. Fischer, Y. C. Chae, “Wake fields for TESLA
cavity structures: Spectral element discontinuous Galerkin
simulations,” in Proc. of SRF07, TUP34, 2007.

[6] M. O. Deville, P. F. Fischer, E. H.Mund,High Order Methods
for Incompressible Fluid Flow, Cambridge University Press
(2002).

The following paragraph should be deleted before the
paper is published: The submitted manuscript has been
created by UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a U.S. De-
partment of Energy Office of Science laboratory, is oper-
ated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its be-
half, a paid-up nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly and dis-
play publicly, by or on behalf of the Government.

